

Plans & Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA PSL

June 15, 2016

Peter Struk

NASA Glenn Research Center

Jen-Ching Tsao, Tadas Bartkus

Ohio Aerospace Institute

Outline

- Introduction & background
- NASA Fundamental Ice Crystal Icing Research Goals
 - Concepts using PSL
- Experimental Description Preliminary 2-day test May 2015
- Results
 - Review one case in detail
 - Look at general trends from sweeping
 - Total Water Content
 - Humidity
 - Spray Bar Water Temperature
- Conclusions

Introduction

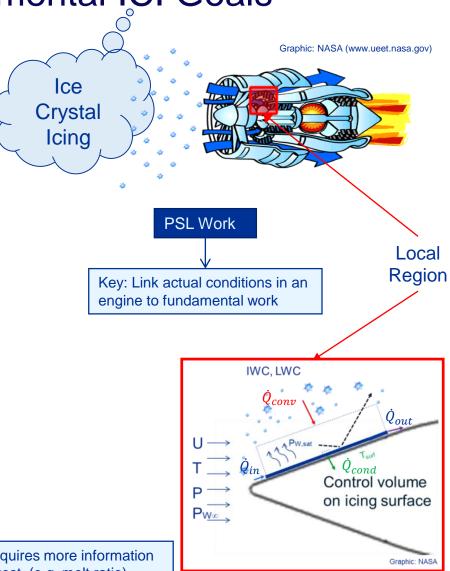
- NASA investigating the fundamental physics of ice crystal icing (ICI)
 - AEST → AATT
- Challenging to study ice-accretion physics directly inside the engine
 - Trying to simulating that environment without using engine
- Evaluating whether the NASA
 Propulsion Systems Lab (PSL), in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies
 - Paper presents concept & some preliminary experimental test results
 - Subsequent paper present complementary modelling work

Atmospheric Environments Safety
Technologies Project (AEST; 2009–2014)

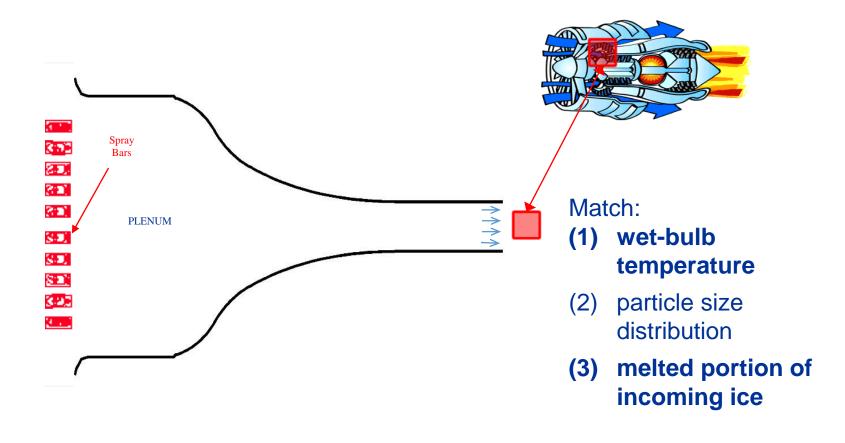
Advance Air Transport Technology
Project (AATT; 2015 +)
Advanced Aircraft Icing (AAI) Subproject

Technical Challenge:

Expand engine aero-thermodynamic modeling capability to predictively assess the onset of icing in current and N+2/N+3 aircraft during flight operation (FY21).


The simulation tools are well anchored in results from both fundamental physics studies and full engine tests.

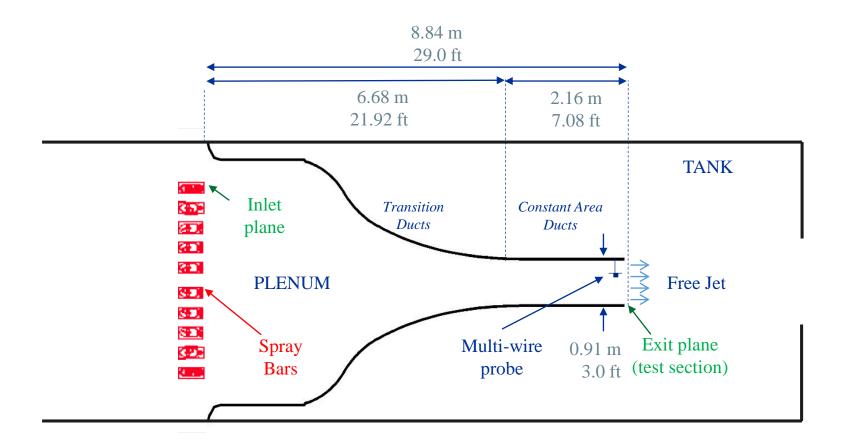
NASA Fundamental ICI Goals


- 1. Identify and bound the conditions affecting ice-crystal ice accretion at the (local) accretion site
- 2. Generate & characterize (i.e. measure) those conditions including uniformity
- Gather data and develop models on ice-crystal icing factors
- 4. Scaling: develop & test scaling relations for ice-crystal icing

Local region requires more information than full-scale test (e.g. melt ratio)

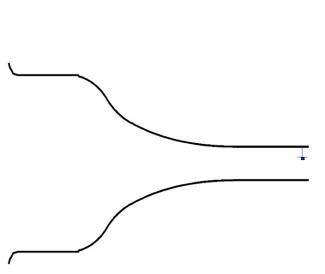
Concept Using PSL

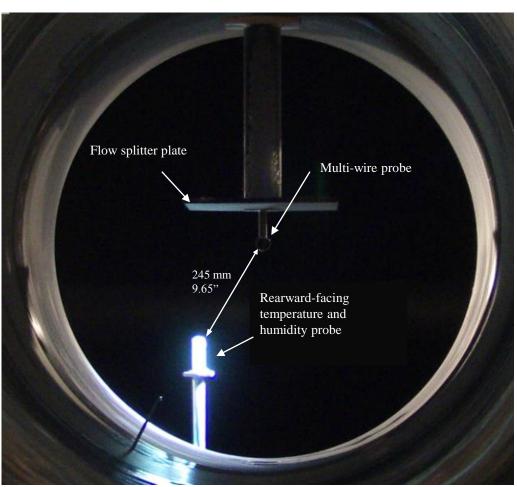
Goal: Ability to generate a prescribed mixed-phase condition at the test section for fundamental ice-crystal icing research

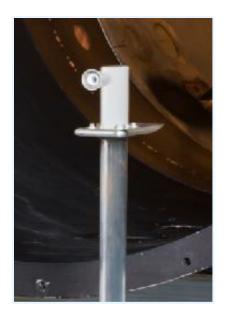


Preliminary Testing

- 2 days of testing occurred in May 2015
- Objectives
 - Preparation for more extensive test scheduled for 2016
 - Examine spray bar and plenum parameters and how they affect the mixedphase at the exit of the free jet
 - Cloud characterization:
 - Melt ratio using SEA multiwire
 - Temperature & humidity measurements at test section (cloud on vs. cloud off) using custom probe
 - Observe ice accretion




PSL Configuration


PSL Configuration (cont.)

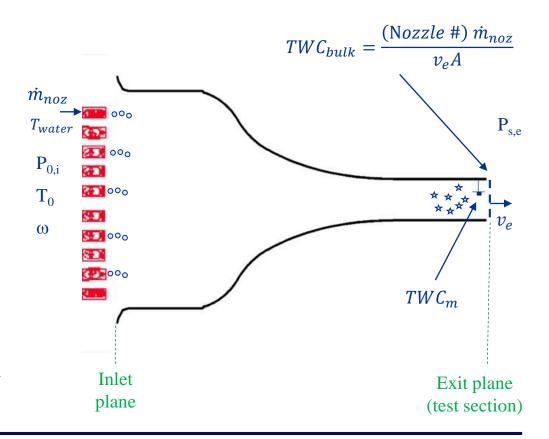
Temperature and Humidity Measurement

Side View

Top View

Tunnel Flow

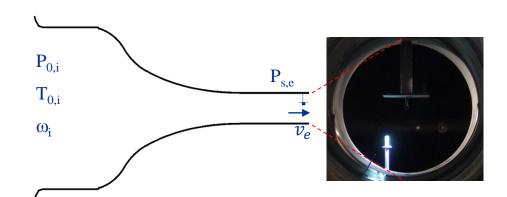
- Reward facing probe
 - Temperature
 - Resistance Temperature Device (RTD)
 placed inside probe inlet to prevent
 water / ice contamination
 - Small suction induced in probe
 - Calibrated to read total temperature given Mach
 - Humidity
 - Flow extracted via same probe inlet
 - Using Spectra Sensor Model WVSS-II
 - Tunable Diode Laser Absorption Spectroscopy (TDLAS)
 - Cameras imaged probe to observe any ice accretion

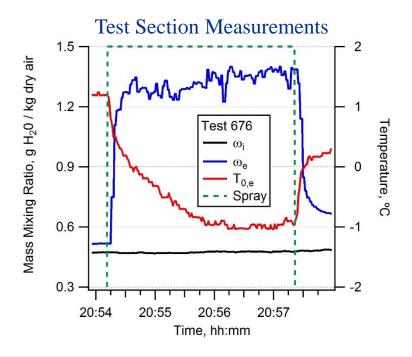


Mixed-Phase Investigation

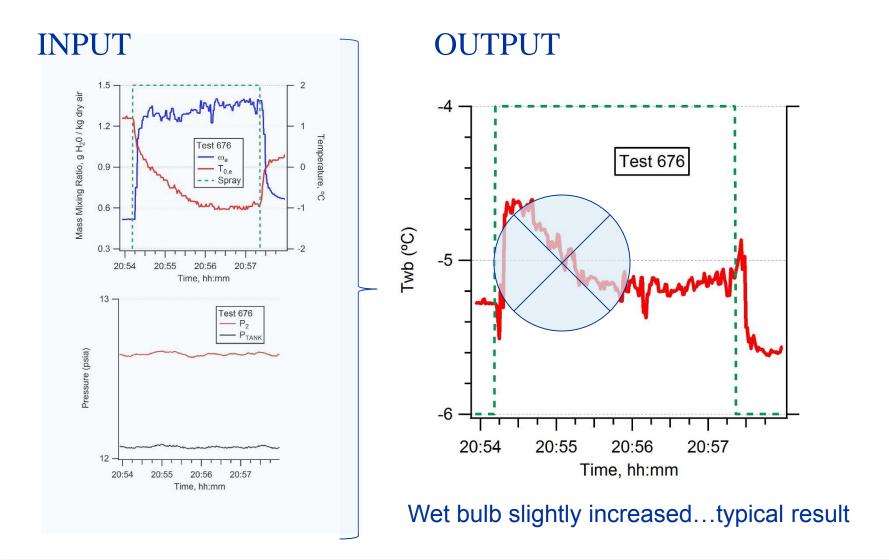
Parameters

- Plenum / test section
 - Total pressure, $P_{0,i}$ (kPa)
 - Static pressure, P_{s.e} (kPa)
 - Velocity, v_e (m/s)
 - Total temperature, $T_{0,i}$ (°C)
 - Humidity, ω_i (g / kg dry)
- Spray bar
 - TWC
 - $P_{air} \& P_{water} \rightarrow \dot{m}_{noz}$
 - Nozzle #
 - Particle Size
 - MVDi (IRT calibrated values)
 - Water / air temperatures, T_{water}


Nomenclature

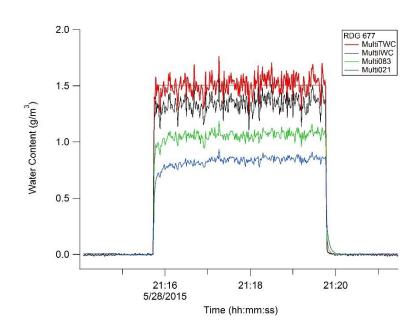


Sample Test Data


- Plenum / Test Section (targets)
 - $P_{0i} = 87.3 \text{ kPa}$
 - $P_{s,e} = 83.6 \text{ kPa } (1.6 \text{ km})$
 - $-v_e = 85 \text{ m/s}$
 - $-T_{0.i} = 1.8^{\circ}C$
 - $-\omega_{i} = 0.5 \text{ g/kg dry (RH_{Pl} = 10\%)}$
- Spray bar
 - $TWC_{bulk} = 1.4 \text{ g/m}^3$
 - $MVDi = 40 \mu m$
- Reported data
 - Temperature measurement lag likely due to thermal inertia of inlet
 - 30 second averages
 - Cloud off (0.52 g/kg, 1.2 °C)
 - Cloud on (1.37 g/kg, -0.9 °C)
 - $-\Delta T_{0,e} = T_{0,e,on} T_{0,e,off}$

Wet-bulb temperature

Multiwire Results


$$-$$
 MVDi = 40 μ m

Multiwire data

- 30 second averages
- $TWC_{m} = 1.50 \text{ g/m}^{3}$
- LWC_{m,2.1} = 1.06 g/m³
- LWC_{m.0.5} = 0.83 g/m³
- Melt ratio, η_e

$$\eta_e = \frac{\max(LWCm)}{TWC_m} = \frac{1.06}{1.50} = 0.70^*$$

* more detailed analysis anticipated to be applied later

Ice Accretion Examples

Case 677 ($\eta_e = 0.70$)

Case 663 ($\eta_e = 0.20$)



8X actual speed

Parameter Sweeps

- Paper presents parameter sweeps for the following variables:
 - $TWC_{bulk} (0.5 5 \text{ g/m}^3)$
 - Plenum RH (10 50%)
 - Spray bar temperature (7°C, 43°C, and 82°C)
- Within each sweep, additional variations on:
 - **MVDi**
 - Wet-bulb temperature

→ Table 2. Facility target conditions and select measurements during two TW				
Test Series ->	TWC Sweep 3			
Facility Target Condition				
P _{0,i} (kPa)	87.3			
P _{s,e} (kPa)	83.6			
ve (m/s)	85			
Altitude (km)	1.6			
T _{0,i} (°C)	4.2			
T _{s,e,off} (°C)	0.6			
RH _{0,i} (%)	10			
$\omega_i (g/kg)$	0.6			
Twb _{0,e,off} (°C)	-3			
$Twb_{s,e,off}(^{\circ}C)$	-6			
T _{water,i} (°C)	7			
$TWC_{bulk}(g/m^3)$	0.78	1.4	2.3	5.0
MVD _i (μm)	40			
	Measurements			
Test #	670	671	672	673
$TWC_m (g/m^3)$	1.4	2.9	4.3	10.0
η e (-)	0.69	0.66	0.23	0.27
$\Delta\omega_{\rm e}({\rm g/kg})$	0.55	0.87	1.3	2.3
$\Delta T_{0,e}$ (°C)	-1.7	-2.3	-2.9	-3.7
Twb _{0,e,on} (°C)	-3	-4	-3	-2
Twb _{s,e,on} (°C)	-6	-6	-5	-4
Ice Accr. (Y/N)	Y	Y	Y	Y

Conclusions

- NASA conducting research on fundamentals of ICI with following goals:
 - Identify and bound the conditions at the (local) accretion site
 - Generate & characterize conditions
 - Develop models & gather data on ice-crystal icing factors
 - Scaling: develop & test scaling relations for ice-crystal icing
- Generate environment outside of an engine to facilitate study
 - Evaluating PSL as potential test bed
- Presented data from an initial 2-day test effort in May 2015
 - Parameter sweeps on TWC, Plenum RH, and T_{water}
 - More limited variation on initial particle size and Twb
 - Saw both expected trends; harder-to-explain trends; new insights
 - Measurement uncertainties, cloud uniformity, and additional data required
 - Preparatory work for 2016 testing
- 2-week test campaign occurred in March 2016
 - Data analysis beginning

Acknowledgement

- Financial support:
 - NASA's, Advanced Air Vehicle's program
 - Advance Air Transport Technology Project (AATT)
 - Advanced Aircraft Icing (AAI) Mr. Tony Nerone, Project Manager
- Special thanks to:
 - Staff of the NASA PSL
 - Kyle Zimmerle, Michael Oliver, and Judy Van Zante who provided information presented in this paper.
 - Mr. Chris Lynch for his excellent imaging work.